Frontiers in Cellular and Infection Microbiology (May 2020)

Pattern Recognition Receptor Ligands as an Emerging Therapeutic Agent for Latent HIV-1 Infection

  • Shokichi Takahama,
  • Takuya Yamamoto,
  • Takuya Yamamoto,
  • Takuya Yamamoto

DOI
https://doi.org/10.3389/fcimb.2020.00216
Journal volume & issue
Vol. 10

Abstract

Read online

Toll-like receptors (TLRs) were first identified as molecular sensors that transduce signals from specific structural patterns derived from pathogens; their underlying molecular mechanisms of recognition and signal transduction are well-understood. To date, more than 20 pattern-recognition receptors (PRRs) have been reported in humans, some of which are membrane-bound, similar to TLRs, whereas others are cytosolic, including retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), and stimulator of interferon genes (STING). Clinically, PRR ligands have been developed as vaccine adjuvants to activate innate immunity and enhance subsequent antigen-specific immune responses. Recently, PRR ligands have been used as direct immunostimulators to enhance immune responses against infectious diseases and cancers. HIV-1 remains one of the world's most significant public health challenges. Without the elimination of HIV-1 latently infected cells, patients require lifelong combination antiretroviral therapy (cART), while research aimed at a functional cure for HIV-1 infection continues. Based on the concept of “shock and kill,” a latency-reversing agent (LRA) has been developed to reactivate latently infected cells and induce cell death. However, previous research has shown that LRAs have limited efficacy in the eradication of these reservoirs in vivo. Besides, PRR ligands with anti-retroviral drugs have been developed for use in HIV treatment for these years. This mini-review summarizes the current understanding of the role of PRR ligands in AIDS research, suggests directions for future research, and proposes potential clinical applications.

Keywords