Image harmonization: A review of statistical and deep learning methods for removing batch effects and evaluation metrics for effective harmonization
Fengling Hu,
Andrew A. Chen,
Hannah Horng,
Vishnu Bashyam,
Christos Davatzikos,
Aaron Alexander-Bloch,
Mingyao Li,
Haochang Shou,
Theodore D. Satterthwaite,
Meichen Yu,
Russell T. Shinohara
Affiliations
Fengling Hu
Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Dr, Philadelphia, PA 19104, United States; Corresponding author.
Andrew A. Chen
Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Dr, Philadelphia, PA 19104, United States
Hannah Horng
Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Dr, Philadelphia, PA 19104, United States
Vishnu Bashyam
Center for Biomedical Image Computing and Analytics (CBICA), Perelman School of Medicine, United States
Christos Davatzikos
Center for Biomedical Image Computing and Analytics (CBICA), Perelman School of Medicine, United States
Aaron Alexander-Bloch
Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States; Penn-CHOP Lifespan Brain Institute, United States; Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, United States
Mingyao Li
Statistical Center for Single-Cell and Spatial Genomics, Perelman School of Medicine, University of Pennsylvania, United States
Haochang Shou
Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Dr, Philadelphia, PA 19104, United States; Center for Biomedical Image Computing and Analytics (CBICA), Perelman School of Medicine, United States
Theodore D. Satterthwaite
Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States; Penn-CHOP Lifespan Brain Institute, United States; The Penn Lifespan Informatics and Neuroimaging Center, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States
Meichen Yu
Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, United States
Russell T. Shinohara
Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Dr, Philadelphia, PA 19104, United States; Center for Biomedical Image Computing and Analytics (CBICA), Perelman School of Medicine, United States
Magnetic resonance imaging and computed tomography from multiple batches (e.g. sites, scanners, datasets, etc.) are increasingly used alongside complex downstream analyses to obtain new insights into the human brain. However, significant confounding due to batch-related technical variation, called batch effects, is present in this data; direct application of downstream analyses to the data may lead to biased results. Image harmonization methods seek to remove these batch effects and enable increased generalizability and reproducibility of downstream results. In this review, we describe and categorize current approaches in statistical and deep learning harmonization methods. We also describe current evaluation metrics used to assess harmonization methods and provide a standardized framework to evaluate newly-proposed methods for effective harmonization and preservation of biological information. Finally, we provide recommendations to end-users to advocate for more effective use of current methods and to methodologists to direct future efforts and accelerate development of the field.