Land (Sep 2023)

U-Net-LSTM: Time Series-Enhanced Lake Boundary Prediction Model

  • Lirong Yin,
  • Lei Wang,
  • Tingqiao Li,
  • Siyu Lu,
  • Jiawei Tian,
  • Zhengtong Yin,
  • Xiaolu Li,
  • Wenfeng Zheng

DOI
https://doi.org/10.3390/land12101859
Journal volume & issue
Vol. 12, no. 10
p. 1859

Abstract

Read online

Change detection of natural lake boundaries is one of the important tasks in remote sensing image interpretation. In an ordinary fully connected network, or CNN, the signal of neurons in each layer can only be propagated to the upper layer, and the processing of samples is independent at each moment. However, for time-series data with transferability, the learned change information needs to be recorded and utilized. To solve the above problems, we propose a lake boundary change prediction model combining U-Net and LSTM. The ensemble of LSTMs helps to improve the overall accuracy and robustness of the model by capturing the spatial and temporal nuances in the data, resulting in more precise predictions. This study selected Lake Urmia as the research area and used the annual panoramic remote sensing images from 1996 to 2014 (Lat: 37°00′ N to 38°15′ N, Lon: 46°10′ E to 44°50′ E) obtained by Google Earth Professional Edition 7.3 software as the research data set. This model uses the U-Net network to extract multi-level change features and analyze the change trend of lake boundaries. The LSTM module is introduced after U-Net to optimize the predictive model using historical data storage and forgetting as well as current input data. This method enables the model to automatically fit the trend of time series data and mine the deep information of lake boundary changes. Through experimental verification, the model’s prediction accuracy for lake boundary changes after training can reach 89.43%. Comparative experiments with the existing U-Net-STN model show that the U-Net-LSTM model used in this study has higher prediction accuracy and lower mean square error.

Keywords