Hereditary Cancer in Clinical Practice (Jan 2018)

Genetic variants of prospectively demonstrated phenocopies in BRCA1/2 kindreds

  • Mev Dominguez-Valentin,
  • D. Gareth R. Evans,
  • Sigve Nakken,
  • Hélène Tubeuf,
  • Daniel Vodak,
  • Per Olaf Ekstrøm,
  • Anke M. Nissen,
  • Monika Morak,
  • Elke Holinski-Feder,
  • Alexandra Martins,
  • Pål Møller,
  • Eivind Hovig

DOI
https://doi.org/10.1186/s13053-018-0086-0
Journal volume & issue
Vol. 16, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Background In kindreds carrying path_BRCA1/2 variants, some women in these families will develop cancer despite testing negative for the family’s pathogenic variant. These families may have additional genetic variants, which not only may increase the susceptibility of the families’ path_BRCA1/2, but also be capable of causing cancer in the absence of the path_BRCA1/2 variants. We aimed to identify novel genetic variants in prospectively detected breast cancer (BC) or gynecological cancer cases tested negative for their families’ pathogenic BRCA1/2 variant (path_BRCA1 or path_BRCA2). Methods Women with BC or gynecological cancer who had tested negative for path_BRCA1 or path_BRCA2 variants were included. Forty-four cancer susceptibility genes were screened for genetic variation through a targeted amplicon-based sequencing assay. Protein- and RNA splicing-dedicated in silico analyses were performed for all variants of unknown significance (VUS). Variants predicted as the ones most likely affecting pre-mRNA splicing were experimentally analyzed in a minigene assay. Results We identified 48 women who were tested negative for their family’s path_BRCA1 (n = 13) or path_BRCA2 (n = 35) variants. Pathogenic variants in the ATM, BRCA2, MSH6 and MUTYH genes were found in 10% (5/48) of the cases, of whom 15% (2/13) were from path_BRCA1 and 9% (3/35) from path_BRCA2 families. Out of the 26 unique VUS, 3 (12%) were predicted to affect RNA splicing (APC c.721G > A, MAP3K1 c.764A > G and MSH2 c.815C > T). However, by using a minigene, assay we here show that APC c.721G > A does not cause a splicing defect, similarly to what has been recently reported for the MAP3K1 c.764A > G. The MSH2 c.815C > T was previously described as causing partial exon skipping and it was identified in this work together with the path_BRCA2 c.9382C > T (p.R3128X). Conclusion All women in breast or breast/ovarian cancer kindreds would benefit from being offered genetic testing irrespective of which causative genetic variants have been demonstrated in their relatives.

Keywords