SoftwareX (Jul 2023)
MOOSE Navier–Stokes module
- Alexander Lindsay,
- Guillaume Giudicelli,
- Peter German,
- John Peterson,
- Yaqi Wang,
- Ramiro Freile,
- David Andrs,
- Paolo Balestra,
- Mauricio Tano,
- Rui Hu,
- Ling Zou,
- Derek Gaston,
- Cody Permann,
- Sebastian Schunert
Affiliations
- Alexander Lindsay
- Idaho National Laboratory, Idaho Falls, ID, 83415, United States of America; Corresponding author.
- Guillaume Giudicelli
- Idaho National Laboratory, Idaho Falls, ID, 83415, United States of America
- Peter German
- Idaho National Laboratory, Idaho Falls, ID, 83415, United States of America
- John Peterson
- Technology Department, Akselos, Inc., Houston, TX, 77043, United States of America
- Yaqi Wang
- Idaho National Laboratory, Idaho Falls, ID, 83415, United States of America
- Ramiro Freile
- Idaho National Laboratory, Idaho Falls, ID, 83415, United States of America; Department of Nuclear Engineering, Texas A&M University, College Station, TX 77843-3133, United States of America
- David Andrs
- Idaho National Laboratory, Idaho Falls, ID, 83415, United States of America
- Paolo Balestra
- Idaho National Laboratory, Idaho Falls, ID, 83415, United States of America
- Mauricio Tano
- Idaho National Laboratory, Idaho Falls, ID, 83415, United States of America
- Rui Hu
- Argonne National Laboratory, Lemont, IL, 60439, United States of America
- Ling Zou
- Argonne National Laboratory, Lemont, IL, 60439, United States of America
- Derek Gaston
- Idaho National Laboratory, Idaho Falls, ID, 83415, United States of America
- Cody Permann
- Idaho National Laboratory, Idaho Falls, ID, 83415, United States of America
- Sebastian Schunert
- Idaho National Laboratory, Idaho Falls, ID, 83415, United States of America
- Journal volume & issue
-
Vol. 23
p. 101503
Abstract
The MOOSE Navier–Stokes module solves mass, momentum, energy, and passive scalar conservation equations in the context of fluid flow. The module supports solution of these equations in both free flow and porous medium contexts and for a range of fluid compressibility. The conservation equations can be discretized in space using continuous Galerkin finite elements or with cell centered finite volumes.