Machine Learning and Knowledge Extraction (Jan 2024)

Real-Time Droplet Detection for Agricultural Spraying Systems: A Deep Learning Approach

  • Nhut Huynh,
  • Kim-Doang Nguyen

DOI
https://doi.org/10.3390/make6010014
Journal volume & issue
Vol. 6, no. 1
pp. 259 – 282

Abstract

Read online

Nozzles are ubiquitous in agriculture: they are used to spray and apply nutrients and pesticides to crops. The properties of droplets sprayed from nozzles are vital factors that determine the effectiveness of the spray. Droplet size and other characteristics affect spray retention and drift, which indicates how much of the spray adheres to the crop and how much becomes chemical runoff that pollutes the environment. There is a critical need to measure these droplet properties to improve the performance of crop spraying systems. This paper establishes a deep learning methodology to detect droplets moving across a camera frame to measure their size. This framework is compatible with embedded systems that have limited onboard resources and can operate in real time. The method leverages a combination of techniques including resizing, normalization, pruning, detection head, unified feature map extraction via a feature pyramid network, non-maximum suppression, and optimization-based training. The approach is designed with the capability of detecting droplets of various sizes, shapes, and orientations. The experimental results demonstrate that the model designed in this study, coupled with the right combination of dataset and augmentation, achieved a 97% precision and 96.8% recall in droplet detection. The proposed methodology outperformed previous models, marking a significant advancement in droplet detection for precision agriculture applications.

Keywords