Atmosphere (Mar 2019)
An Alternative Bilinear Interpolation Method Between Spherical Grids
Abstract
In geoscientific studies, conventional bilinear interpolation has been widely used for remapping between logically rectangular grids on the surface of a sphere. Recently, various spherical grid systems including geodesic grids have been suggested to tackle the singularity problem caused by the traditional latitude–longitude grid. We suggest an alternative to pre-existing bilinear interpolation methods for remapping between any spherical grids, even for randomly distributed points on a sphere. This method supports any geometrical configuration of four source points neighboring a target point for interpolation, and provides remapping accuracy equivalent to the conventional bilinear method. In addition, for efficient search of neighboring source points, we use the linked-cell mapping method with a cubed-sphere as a reference frame. As a result, the computational cost is proportional to NlogN instead of N 2 (N being the number of grid points), even for the remapping of randomly distributed points on a sphere.
Keywords