Mathematical and Computational Applications (Jan 2019)

Block Preconditioning Matrices for the Newton Method to Compute the Dominant λ-Modes Associated with the Neutron Diffusion Equation

  • Amanda Carreño,
  • Luca Bergamaschi,
  • Angeles Martinez,
  • Antoni Vidal-Ferrándiz,
  • Damian Ginestar,
  • Gumersindo Verdú

DOI
https://doi.org/10.3390/mca24010009
Journal volume & issue
Vol. 24, no. 1
p. 9

Abstract

Read online

In nuclear engineering, the λ -modes associated with the neutron diffusion equation are applied to study the criticality of reactors and to develop modal methods for the transient analysis. The differential eigenvalue problem that needs to be solved is discretized using a finite element method, obtaining a generalized algebraic eigenvalue problem whose associated matrices are large and sparse. Then, efficient methods are needed to solve this problem. In this work, we used a block generalized Newton method implemented with a matrix-free technique that does not store all matrices explicitly. This technique reduces mainly the computational memory and, in some cases, when the assembly of the matrices is an expensive task, the computational time. The main problem is that the block Newton method requires solving linear systems, which need to be preconditioned. The construction of preconditioners such as ILU or ICC based on a fully-assembled matrix is not efficient in terms of the memory with the matrix-free implementation. As an alternative, several block preconditioners are studied that only save a few block matrices in comparison with the full problem. To test the performance of these methodologies, different reactor problems are studied.

Keywords