BMC Bioinformatics (Mar 2024)

eSVD-DE: cohort-wide differential expression in single-cell RNA-seq data using exponential-family embeddings

  • Kevin Z. Lin,
  • Yixuan Qiu,
  • Kathryn Roeder

DOI
https://doi.org/10.1186/s12859-024-05724-7
Journal volume & issue
Vol. 25, no. 1
pp. 1 – 30

Abstract

Read online

Abstract Background Single-cell RNA-sequencing (scRNA) datasets are becoming increasingly popular in clinical and cohort studies, but there is a lack of methods to investigate differentially expressed (DE) genes among such datasets with numerous individuals. While numerous methods exist to find DE genes for scRNA data from limited individuals, differential-expression testing for large cohorts of case and control individuals using scRNA data poses unique challenges due to substantial effects of human variation, i.e., individual-level confounding covariates that are difficult to account for in the presence of sparsely-observed genes. Results We develop the eSVD-DE, a matrix factorization that pools information across genes and removes confounding covariate effects, followed by a novel two-sample test in mean expression between case and control individuals. In general, differential testing after dimension reduction yields an inflation of Type-1 errors. However, we overcome this by testing for differences between the case and control individuals’ posterior mean distributions via a hierarchical model. In previously published datasets of various biological systems, eSVD-DE has more accuracy and power compared to other DE methods typically repurposed for analyzing cohort-wide differential expression. Conclusions eSVD-DE proposes a novel and powerful way to test for DE genes among cohorts after performing a dimension reduction. Accurate identification of differential expression on the individual level, instead of the cell level, is important for linking scRNA-seq studies to our understanding of the human population.

Keywords