Supramolecular Polymer Co-Assembled Multifunctional Chiral Hybrid Hydrogels with Adhesive, Self-Healing and Antibacterial Properties
Zakia Riaz,
Sravan Baddi,
Fengli Gao,
Xiaxin Qiu,
Chuanliang Feng
Affiliations
Zakia Riaz
State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Rd 800, Shanghai 200240, China
Sravan Baddi
State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Rd 800, Shanghai 200240, China
Fengli Gao
State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Rd 800, Shanghai 200240, China
Xiaxin Qiu
State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Rd 800, Shanghai 200240, China
Chuanliang Feng
State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Rd 800, Shanghai 200240, China
Amino acid-derived self-assembled nanofibers comprising supramolecular chiral hydrogels with unique physiochemical characteristics are highly demanded biomaterials for various biological applications. However, their narrow functionality often limits practical use, necessitating the development of biomaterials with multiple features within a single system. Herein, chiral co-assembled hybrid hydrogel systems termed LPH-EGCG and DPH-EGCG were constructed by co-assembling L/DPFEG gelators with epigallocatechin gallate (EGCG) followed by cross-linking with polyvinyl alcohol (PVA) and hyaluronic acid (HA). The developed hybrid hydrogels exhibit superior mechanical strength, self-healing capabilities, and adhesive properties, owing to synergistic non-covalent interactions. Integrating hydrophilic polymers enhances the system’s capacity to demonstrate favorable swelling characteristics. Furthermore, the introduction of EGCG facilitated the hybrid gels to display notable antibacterial properties against both Gram-positive and Gram-negative bacterial strains, alongside showcasing strong antioxidant capabilities. In vitro investigation demonstrated enhanced cell adhesion and migration with the LPH-EGCG system in comparison to DPH-EGCG, thus emphasizing the promising prospects of these hybrid hydrogels in advanced tissue engineering applications.