Frontiers in Physiology (Nov 2016)

3,5,3’-triiodo-L-thyronine- and 3,5-diiodo-L-thyronine- affected metabolic pathways in liver of LDL receptor deficient mice

  • Maria Moreno,
  • Elena Silvestri,
  • Maria Coppola,
  • Ira J. Goldberg,
  • Li-Shin Huang,
  • Anna Maria Salzano,
  • Fulvio D’Angelo,
  • Joel R. Ehrenkranz,
  • Fernando Goglia

DOI
https://doi.org/10.3389/fphys.2016.00545
Journal volume & issue
Vol. 7

Abstract

Read online

3,5,3’-triiodo-L-thyronine (T3) and 3,5-diiodo-L-thyronine (T2), when administered to a model of familial hypercholesterolemia, i.e. low density lipoprotein receptor (LDLr)-knockout (Ldlr-/-) mice fed with a Western type diet (WTD), dramatically reduce circulating total and very low-density lipoprotein/LDL cholesterol with decreased liver apolipoprotein B (ApoB) production. The aim of the study was to highlight putative molecular mechanisms to manage cholesterol levels in the absence of LDLr. A comprehensive comparative profiling of changes in expression of soluble proteins in livers from Ldlr-/- mice treated with either T3 or T2 was performed. From a total proteome of 450 liver proteins, 25 identified proteins were affected by both T2 and T3, 18 only by T3 and 9 only by T2. Using in silico analyses, an overlap was observed with 11/14 pathways common to both iodothyronines, with T2 and T3 preferentially altering sub-networks centered around hepatocyte nuclear factor 4 α (HNF4α) and peroxisome proliferator-activated receptor α (PPARα), respectively. Both T2 and T3 administration significantly reduced nuclear HNF4α protein content, while T2, but not T3, decreased the expression levels of the HNFα transcriptional coactivator PGC-1α. Lower PPARα levels were found only following T3 treatment while both T3 and T2 lowered liver X receptor α (LXRα) nuclear content. Overall, this study, although it was not meant to investigate the use of T2 and T3 as a therapeutic agent, provides novel insights into the regulation of hepatic metabolic pathways involved in T3- and T2-driven cholesterol reduction in Ldlr-/- mice.

Keywords