Water (Dec 2021)

Quantitative Analysis of Winter Wheat Growth and Yields Responding to Climate Change in Xinjiang, China

  • Haixia Lin,
  • Na Li,
  • Yi Li,
  • Hongguang Liu,
  • Jian Liu,
  • Linchao Li,
  • Puyu Feng,
  • Deli Liu,
  • Chuncheng Liu

DOI
https://doi.org/10.3390/w13243624
Journal volume & issue
Vol. 13, no. 24
p. 3624

Abstract

Read online

The knowledge of climate change effects on variations of winter wheat yields are crucial for productions. Our objectives were to investigate the relationship between yield-related indices of winter wheat and the related climatic variables (selected using variance inflation factors) at the 20 sites of Xinjiang, China over 1981–2017. The background of climate and yield changes was analyzed from temporal and spatial respects. The number of independent climatic variables was selected with the variance inflation factor method to remove the multicollinear feature. The Pearson correlation was conducted between the first difference values of climatic variables and yield-related indices of winter wheat (namely plant height, growth period duration, 1000-kernel weight, kernel number per ear, biomass and yield) to find the key climatic variables that impacted winter wheat growth and yields. The multi-variate linear and nonlinear functions were established step by step using the selected key climatic variables. The best function was determined for each site (significant for p < 0.05). From the results, there were general wetter and warmer trends of the climatic variables. Correspondingly, shortened winter wheat phenology and increased growth and yields were observed for most sites. Still, the climatic trends had mixed effects on winter wheat yields. The effects of precipitation, mean air temperature and relative humidity on plant height and growth period duration agreed well. Different sites had different major climatic drivers for winter wheat growth or yields, and the best functions of growth and yields could be linearly or nonlinearly, mostly described by multi-variate functions. The winter wheat growth or yield indices were also found to be closely connected with the soil water content status at the eight sites. The relationship between winter wheat growth or yield and climate provided useful references for forecasting crop production and for projecting the impact of future climate changes.

Keywords