iScience (Aug 2023)

Free-standing conductive nickel metal-organic framework nanowires as bifunctional electrodes for wearable pressure sensors and Ni-Zn batteries

  • Yuan Fan,
  • Yuanao Zhang,
  • Jiajun Wu,
  • Song Zhao,
  • Jiabin Guo,
  • Zhimin Wang,
  • Ming Chen,
  • Qichong Zhang,
  • Qingwen Li

Journal volume & issue
Vol. 26, no. 8
p. 107397

Abstract

Read online

Summary: Free-standing metal-organic frameworks (MOFs) with controllable structure and good stability are emerging as promising materials for applications in flexible pressure sensors and energy-storage devices. However, the inherent low electrical conductivity of MOF-based materials requires complex preparation processes that involve high-temperature carbonization. This work presents a simple method to grow conductive nickel MOF nanowire arrays on carbon cloth (Ni-CAT@CC) and use Ni-CAT@CC as the functional electrodes for flexible piezoresistive sensor. The resulting sensor is able to monitor human activity, including elbow bending, knee bending, and wrist bending. Besides, the soft-packaged aqueous Ni-Zn battery is assembled with Ni-CAT@CC, a piece of glass microfiber filters, and Zn foil acting as cathode, separator, and anode, respectively. The Ni-Zn battery can be used as a power source for finger pressure monitoring. This work demonstrates free-standing MOF-based nanowires as bifunctional fabric electrodes for wearable electronics.

Keywords