Electronic Journal of Differential Equations (Aug 2025)

Hardy operators and commutators on generalized central function spaces

  • Le Trung Nghia

Journal volume & issue
Vol. 2025, no. 82,
pp. 1 – 17

Abstract

Read online

In this article, we study the boundedness of operators of Hardy type on generalized central function spaces, such as the generalized central Hardy space $\mathbf{HA}^{p,r}_\varphi(\mathbb{R}^n)$, the generalized central Morrey space $\dot{\mathbf{M}}^{p,r}_\varphi (\mathbb{R}^n)$, and the generalized central Campanato space $\dot{{\rm CMO}}^{p,r}_\varphi (\mathbb{R}^n)$, with $p\in(1,\infty)$, and $\varphi(t):(0,\infty)\to (0,\infty)$. We first show that $\mathbf{HA}^{p',r'}_\varphi (\mathbb{R}^n)$ is the predual of $\dot{{\rm CMO}}^{p,r}_\varphi (\mathbb{R}^n)$. After that, we investigate the boundedness of operators of Hardy type on those spaces. By duality, we obtain the boundedness characterization of function $b\in \dot{{\rm CMO}}^{p,r}_\varphi (\mathbb{R}^n)$ via the $\dot{\textbf{M}}^{p,r}_\varphi (\mathbb{R}^n)$-boundedness of commutator $[b,\mathcal{H}^*]$.

Keywords