Remote Sensing (Jan 2021)

A New Combined Adjustment Model for Geolocation Accuracy Improvement of Multiple Sources Optical and SAR Imagery

  • Niangang Jiao,
  • Feng Wang,
  • Hongjian You

DOI
https://doi.org/10.3390/rs13030491
Journal volume & issue
Vol. 13, no. 3
p. 491

Abstract

Read online

Numerous earth observation data obtained from different platforms have been widely used in various fields, and geometric calibration is a fundamental step for these applications. Traditional calibration methods are developed based on the rational function model (RFM), which is produced by image vendors as a substitution of the rigorous sensor model (RSM). Generally, the fitting accuracy of the RFM is much higher than 1 pixel, whereas the result decreases to several pixels in mountainous areas, especially for Synthetic Aperture Radar (SAR) imagery. Therefore, this paper proposes a new combined adjustment for geolocation accuracy improvement of multiple sources satellite SAR and optical imagery. Tie points are extracted based on a robust image matching algorithm, and relationships between the parameters of the range-doppler (RD) model and the RFM are developed by transformed into the same Geodetic Coordinate systems. At the same time, a heterogeneous weight strategy is designed for better convergence. Experimental results indicate that our proposed model can achieve much higher geolocation accuracy with approximately 2.60 pixels in the X direction and 3.50 pixels in the Y direction. Compared with traditional methods developed based on RFM, our proposed model provides a new way for synergistic use of multiple sources remote sensing data.

Keywords