Nickel Based Electrospun Materials with Tuned Morphology and Composition
Giorgio Ercolano,
Filippo Farina,
Sara Cavaliere,
Deborah J. Jones,
Jacques Rozière
Affiliations
Giorgio Ercolano
Institut Charles Gerhardt de Montpellier, Agrégats Interfaces et Matériaux pour l’Energie, UMR 5253 CNRS, Université de Montpellier, 34095 Montpellier CEDEX 5, France
Filippo Farina
Institut Charles Gerhardt de Montpellier, Agrégats Interfaces et Matériaux pour l’Energie, UMR 5253 CNRS, Université de Montpellier, 34095 Montpellier CEDEX 5, France
Sara Cavaliere
Institut Charles Gerhardt de Montpellier, Agrégats Interfaces et Matériaux pour l’Energie, UMR 5253 CNRS, Université de Montpellier, 34095 Montpellier CEDEX 5, France
Deborah J. Jones
Institut Charles Gerhardt de Montpellier, Agrégats Interfaces et Matériaux pour l’Energie, UMR 5253 CNRS, Université de Montpellier, 34095 Montpellier CEDEX 5, France
Jacques Rozière
Institut Charles Gerhardt de Montpellier, Agrégats Interfaces et Matériaux pour l’Energie, UMR 5253 CNRS, Université de Montpellier, 34095 Montpellier CEDEX 5, France
Nickel is set to play a crucial role to substitute the less-abundant platinum in clean electrochemical energy conversion and storage devices and catalysis. The controlled design of Ni nanomaterials is essential to fine-tune their properties to match these applications. A systematic study of electrospinning and thermal post-treatment parameters has been performed to synthesize Ni materials and tune their morphology (fibers, ribbons, and sponge-like structures) and composition (metallic Ni, NiO, Ni/C, Ni3N and their combinations). The obtained Ni-based spun materials have been characterized by scanning and transmission electron microscopy, X-ray diffraction and thermogravimetric analysis. The possibility of upscaling and the versatility of electrospinning open the way to large-scale production of Ni nanostructures, as well as bi- and multi-metal systems for widened applications.