Heliyon (Jun 2024)
Predicting the spatial distribution of three Ephedra species under climate change using the MaxEnt model
Abstract
In the context of global warming, the habitats of Ephedra, including Ephedra sinica Stapf, Ephedra intermedia Schrenk ex Mey, and Ephedra equisetina Bunge, have been substantially threatened and deteriorated in recent years. Little is known about the potential geographic dynamics of economically renowned species, including those used in sand fixation and traditional Chinese medicine, under climate change. Therefore, evaluating their potential habitat and determining the crucial environmental variables affecting E. sinica, E. intermedia and E. equisetina under the driving force of global warming are extremely important. In this study, an optimized MaxEnt model in the kuenm package on the basis of occurrence records (a total of 103, 101 and 97 points for E. sinica, E. intermedia and E. equisetina, respectively) and 37 environmental factors were utilized to simulate the distribution of the three species. Two representative concentration pathways (SSP2.6 and SSP8.5) at 2041–2060 and 2061–2080, respectively, were used to establish a future distribution model of the three species. The results indicated that approximately 6.92 × 105 km2, 2.95 × 105 km2, and 11.5 × 105 km2 of suitable regions for E. sinica, E. intermedia and E. equisetina were obtained, which were mostly distributed in central and eastern Inner Mongolia, eastern and southern Gansu, and northern Xinjiang, respectively. Critical environmental variables, such as land cover and annual precipitation, were regarded as critical parameters for the three species. Future assessment revealed that over 60 % of the potential distribution area was affected, and the stability of E. sinica under the SSP8.5 scenario was the greatest. The spatial dynamic changes in suitable areas for E. intermedia were smaller than those for E. equisetina and E. sinica in the future. The comprehensive analysis revealed that the fluctuations in the distributions of the three Ephedra species under climate change are small and provide useful information for future conservation. Therefore, target conservation and management measures should be implemented in combination with the suitability thresholds of different environmental parameters. Our results provide useful recommendations for the current and future protection of Ephedra populations.