IUCrJ (Mar 2020)
Comparing serial X-ray crystallography and microcrystal electron diffraction (MicroED) as methods for routine structure determination from small macromolecular crystals
- Alexander M. Wolff,
- Iris D. Young,
- Raymond G. Sierra,
- Aaron S. Brewster,
- Michael W. Martynowycz,
- Eriko Nango,
- Michihiro Sugahara,
- Takanori Nakane,
- Kazutaka Ito,
- Andrew Aquila,
- Asmit Bhowmick,
- Justin T. Biel,
- Sergio Carbajo,
- Aina E. Cohen,
- Saul Cortez,
- Ana Gonzalez,
- Tomoya Hino,
- Dohyun Im,
- Jake D. Koralek,
- Minoru Kubo,
- Tomas S. Lazarou,
- Takashi Nomura,
- Shigeki Owada,
- Avi J. Samelson,
- Tomoyuki Tanaka,
- Rie Tanaka,
- Erin M. Thompson,
- Henry van den Bedem,
- Rahel A. Woldeyes,
- Fumiaki Yumoto,
- Wei Zhao,
- Kensuke Tono,
- Sebastien Boutet,
- So Iwata,
- Tamir Gonen,
- Nicholas K. Sauter,
- James S. Fraser,
- Michael C. Thompson
Affiliations
- Alexander M. Wolff
- Graduate Program in Biophysics, University of California, San Francisco, San Francisco, California, USA
- Iris D. Young
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
- Raymond G. Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
- Aaron S. Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Michael W. Martynowycz
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, California, USA
- Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Michihiro Sugahara
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Takanori Nakane
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Kazutaka Ito
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
- Andrew Aquila
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
- Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Justin T. Biel
- Graduate Program in Biophysics, University of California, San Francisco, San Francisco, California, USA
- Sergio Carbajo
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
- Aina E. Cohen
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California, USA
- Saul Cortez
- Department of Biology, San Francisco State University, San Francisco, California, USA
- Ana Gonzalez
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California, USA
- Tomoya Hino
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho, Minami, Tottori 680-8552, Japan
- Dohyun Im
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Jake D. Koralek
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
- Minoru Kubo
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Tomas S. Lazarou
- Department of Chemistry, New York University, New York, USA
- Takashi Nomura
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Avi J. Samelson
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, USA
- Tomoyuki Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Rie Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Erin M. Thompson
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
- Henry van den Bedem
- Bioscience Department, SLAC National Accelerator Laboratory, Menlo Park, California, USA
- Rahel A. Woldeyes
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
- Fumiaki Yumoto
- Structural Biology Research Center, Institute of Materials Structure Science, KEK/High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0034, Japan
- Wei Zhao
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
- Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Sebastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
- So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Tamir Gonen
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, California, USA
- Nicholas K. Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
- Michael C. Thompson
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
- DOI
- https://doi.org/10.1107/S205225252000072X
- Journal volume & issue
-
Vol. 7,
no. 2
pp. 306 – 323
Abstract
Innovative new crystallographic methods are facilitating structural studies from ever smaller crystals of biological macromolecules. In particular, serial X-ray crystallography and microcrystal electron diffraction (MicroED) have emerged as useful methods for obtaining structural information from crystals on the nanometre to micrometre scale. Despite the utility of these methods, their implementation can often be difficult, as they present many challenges that are not encountered in traditional macromolecular crystallography experiments. Here, XFEL serial crystallography experiments and MicroED experiments using batch-grown microcrystals of the enzyme cyclophilin A are described. The results provide a roadmap for researchers hoping to design macromolecular microcrystallography experiments, and they highlight the strengths and weaknesses of the two methods. Specifically, we focus on how the different physical conditions imposed by the sample-preparation and delivery methods required for each type of experiment affect the crystal structure of the enzyme.
Keywords