PLoS ONE (Jan 2015)

Sevoflurane inhibits nuclear factor-κB activation in lipopolysaccharide-induced acute inflammatory lung injury via toll-like receptor 4 signaling.

  • Xi Jia Sun,
  • Xiao Qian Li,
  • Xiao Long Wang,
  • Wen Fei Tan,
  • Jun Ke Wang

DOI
https://doi.org/10.1371/journal.pone.0122752
Journal volume & issue
Vol. 10, no. 4
p. e0122752

Abstract

Read online

BACKGROUND:Infection is a common cause of acute lung injury (ALI). This study was aimed to explore whether Toll-like receptors 4 (TLR4) of airway smooth muscle cells (ASMCs) play a role in lipopolysaccharide (LPS)-induced airway hyperresponsiveness and potential mechanisms. METHODS:In vivo: A sensitizing dose of LPS (50 µg) was administered i.p. to female mice before anesthesia with either 3% sevoflurane or phenobarbital i.p. After stabilization, the mice were challenged with 5 µg of intratracheal LPS to mimic inflammatory attack. The effects of sevoflurane were assessed by measurement of airway responsiveness to methacholine, histological examination, and IL-1, IL-6, TNF-α levels in bronchoalveolar lavage fluid (BALF). Protein and gene expression of TLR4 and NF-κB were also assessed. In vitro: After pre-sensitization of ASMCs and ASM segments for 24h, levels of TLR4 and NF-κB proteins in cultured ASMCs were measured after continuous LPS exposure for 1, 3, 5, 12 and 24h in presence or absence of sevoflurane. Constrictor and relaxant responsiveness of ASM was measured 24 h afterwards. RESULTS:The mRNA and protein levels of NF-κB and TLR4 in ASM were increased and maintained at high level after LPS challenge throughout 24h observation period, both in vivo and in vitro. Sevoflurane reduced LPS-induced airway hyperresponsiveness, lung inflammatory cell infiltration and proinflammatory cytokines release in BALF as well as maximal isometric contractile force of ASM segments to acetylcholine, but it increased maximal relaxation response to isoproterenol. Treatment with specific NF-κB inhibitor produced similar protections as sevoflurane, including decreased expressions of TLR4 and NF-κB in cultured ASMCs and improved pharmacodynamic responsiveness of ASM to ACh and isoproterenol. CONCLUSIONS:This study demonstrates the crucial role of TLR4 activation in ASMCs during ALI in response to LPS. Sevoflurane exerts direct relaxant and anti-inflammatory effects in vivo and in vitro via inhibition of TLR4/NF-κB pathway.