Perm Journal of Petroleum and Mining Engineering (Mar 2018)

Security of major pipelines in presence of terroristic threats: prognostic estimates

  • Vladimir A. Komarov,
  • Zinaida V. Semenova,
  • Evgeniy M. Mikhaylov,
  • Aleksey A. Nigrey,
  • Dmitriy A. Bronnikov

DOI
https://doi.org/10.15593/2224-9923/2018.1.8
Journal volume & issue
Vol. 17, no. 1
pp. 88 – 100

Abstract

Read online

The purpose of the paper is to substantiate the approach to determining the required probability of detecting unauthorized attempts to contact the pipe shell to maintain a minimum level of pipeline security losses. That is also nesseccerly to assess probability trend in the near future. Based on the information obtained it is planned to propose the structure of the physical pipeline security system to neutralize terroristic attacks. Results of studies of vibroacoustic oscillations in the shell of a major pipeline during its operation are given. The mechanisms of change in parameters of a vibroacoustic pulse excited at a local point of a pipeline when it is propagated through a pipeline are expalined. Results of studies on the solution of the problem of detection and prevention of emergencies in the protected zone by seismic oscillations are considered. It is concluded that it is possible to detect precursors of emergencies by vibroacoustic and seismic vibrations of the pipe shell. The effectiveness of the proposed approach to determine the requirements for systems of protection of objects from terroristic threats is demonstrated. The region was chosen in accordance with available published data for a relatively long period of time, necessary for setting up a computational experiment. It is interesting to receive prognostic estimates in that segment of economy for the country as a whole. Presence of such information allow creating a policy for detecting terroristic attacks and deciding on the requirements for the physical protection system that have to be provided in the current period and short term. Today, there is no way to effectively fight with prepared violators to achieve their goals using any of the known single-sensor systems. It is concluded that there is a need to develop a multi-sensor system, minimum equipment of which should include interconnected seismic and vibro-acoustic subsystems. Combination of vibro-acoustic and seismoanalytical subsystems allows compensating the most significant drawbacks of each of them.

Keywords