Machines (Nov 2024)
Research on Unbalanced Vibration Characteristics and Assembly Phase Angle Probability Distribution of Dual-Rotor System
Abstract
This paper addresses the complex issue of vibration response characteristics resulting from the unbalanced assembly of the double rotors in the 31F aero-engine. The study investigates the vibration response behavior of the dual-rotor system through the adjustment of rotor assembly phase angle. Initially, a dynamic model of the four-disk, five-pivot dual-rotor system is established, with its natural frequencies and vibration modes verified. The influence of size and the position of the unbalance on the vibration amplitude in the dual-rotor system is analyzed. Additionally, the probability distribution of the assembly phase angles for both the compressor and turbine sections of the low-pressure rotor is examined. The results indicate that for the low-pressure rotor exhibiting excessive vibration, adjusting the assembly phase angle of the rotors’ system’s compressor or the turbine section by 180 degrees leads to a vibration qualification rate of 70.1435%. This finding is consistent with the observations from the field experience method used in the former Soviet Union. Finally, corresponding experimental verification is conducted.
Keywords