BMC Medical Imaging (Jun 2024)
Generation of virtual monoenergetic images at 40 keV of the upper abdomen and image quality evaluation based on generative adversarial networks
Abstract
Abstract Background Abdominal CT scans are vital for diagnosing abdominal diseases but have limitations in tissue analysis and soft tissue detection. Dual-energy CT (DECT) can improve these issues by offering low keV virtual monoenergetic images (VMI), enhancing lesion detection and tissue characterization. However, its cost limits widespread use. Purpose To develop a model that converts conventional images (CI) into generative virtual monoenergetic images at 40 keV (Gen-VMI40keV) of the upper abdomen CT scan. Methods Totally 444 patients who underwent upper abdominal spectral contrast-enhanced CT were enrolled and assigned to the training and validation datasets (7:3). Then, 40-keV portal-vein virtual monoenergetic (VMI40keV) and CI, generated from spectral CT scans, served as target and source images. These images were employed to build and train a CI-VMI40keV model. Indexes such as Mean Absolute Error (MAE), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity (SSIM) were utilized to determine the best generator mode. An additional 198 cases were divided into three test groups, including Group 1 (58 cases with visible abnormalities), Group 2 (40 cases with hepatocellular carcinoma [HCC]) and Group 3 (100 cases from a publicly available HCC dataset). Both subjective and objective evaluations were performed. Comparisons, correlation analyses and Bland-Altman plot analyses were performed. Results The 192nd iteration produced the best generator mode (lower MAE and highest PSNR and SSIM). In the Test groups (1 and 2), both VMI40keV and Gen-VMI40keV significantly improved CT values, as well as SNR and CNR, for all organs compared to CI. Significant positive correlations for objective indexes were found between Gen-VMI40keV and VMI40keV in various organs and lesions. Bland-Altman analysis showed that the differences between both imaging types mostly fell within the 95% confidence interval. Pearson’s and Spearman’s correlation coefficients for objective scores between Gen-VMI40keV and VMI40keV in Groups 1 and 2 ranged from 0.645 to 0.980. In Group 3, Gen-VMI40keV yielded significantly higher CT values for HCC (220.5HU vs. 109.1HU) and liver (220.0HU vs. 112.8HU) compared to CI (p < 0.01). The CNR for HCC/liver was also significantly higher in Gen-VMI40keV (2.0 vs. 1.2) than in CI (p < 0.01). Additionally, Gen-VMI40keV was subjectively evaluated to have a higher image quality compared to CI. Conclusion CI-VMI40keV model can generate Gen-VMI40keV from conventional CT scan, closely resembling VMI40keV.
Keywords