Nanoenergy Advances (May 2023)

A Hybrid Triboelectric-Electromagnetic Nanogenerator Based on Arm Swing Energy Harvesting

  • Jiayue Zheng,
  • Zhi Cao,
  • Chengcheng Han,
  • Xuelian Wei,
  • Linlin Wang,
  • Zhiyi Wu

DOI
https://doi.org/10.3390/nanoenergyadv3020007
Journal volume & issue
Vol. 3, no. 2
pp. 126 – 137

Abstract

Read online

As wearable devices continue to be updated and iterated, there is an increasing demand for energy supplies that are small, portable and capable of working continuously for extended periods of time. Here, a hybrid triboelectric-electromagnetic nanogenerator (HNG) based on a biomechanical energy harvester is demonstrated. The HNG is designed to be worn on the wrist according to the curve of the wearer’s arm swing. During the swinging of the arm, the magnet covered by the PTFE film will move relative to the curved cavity of the HNG and take on a negative charge by rubbing against the inner wall of the Cu coated cavity, resulting in a change in the potential difference between the two copper electrodes on the inner wall of the curved cavity. The movement of the magnet causes the magnetic flux of the three pairs of coils on both sides of the arc track to change to produce the induced electric potential, which converts the mechanical energy generated by the arm swing into electrical energy. After the rational design, the HNG is integrated into a small size device to achieve the collection of biomechanical energy. Several experiments were conducted to verify the HNG’s usability. Experiments show that the HNG takes 90 s to charge from 0 V to 1.2 V for a 1000 μF capacitor. In addition, the HNG can light up 23 LEDs simultaneously and provide a continuous supply of energy to portable electronic devices, such as temperature sensors and electronic watches after the capacitor has stored the energy. Furthermore, the HNG is experimentally verified by volunteers wearing the HNG to achieve continuous and stable output in all three states of slow swing, fast swing and running swing. This work not only provides a useful reference for human biomechanical energy harvesting, but can also provide a continuous, clean source of energy for wearable devices.

Keywords