Remote Sensing (Aug 2022)
Chinese Nationwide Earthquake Early Warning System and Its Performance in the 2022 Lushan <i>M</i>6.1 Earthquake
Abstract
As one of the most earthquake-prone regions in the world, China faces extremely serious earthquake threats, especially for those heavily populated urban areas located near large fault zones. To improve the ability to prevent and minimize earthquake disaster risks, and to reduce earthquake disaster losses, China is currently building a nationwide earthquake early warning system (EEWS) with the largest seismic network in the world. In this paper, we present the newest progress of this project through describing the overall architecture of the national EEWS and evaluating the system performance during the 2022 Lushan M6.1 earthquake. The accuracy of the source characterization for the Lushan earthquake is discussed by comparing the continually estimated location and magnitude with the catalogs obtained from the China Earthquake Networks Center. For this earthquake, the EEWS generated a total of five alerts, and an initial alert was created 5.7 s after its occurrence, with excellent epicentral location and origin time estimation. The final alert was issued 16.5 s after origin time with a magnitude estimate of M6.1, the same as the catalog value. However, from the point view of alerting performance, the radius of the real blind zone without warning time was about 30 km and much larger than the theoretical result, mainly caused by the releasing system not considering the epicenter distance of each terminal when issuing the alerts. Although the earthquake exposed some limitations that need to be addressed in future upgrades, the results showed that most aspects of the EEWS presented a robust performance, with continuous, reliable event detections and early-warning information releasing.
Keywords