Mathematical and Computational Applications (Dec 2018)

Active Optics in Astronomy: Freeform Mirror for the MESSIER Telescope Proposal

  • Gerard Rene Lemaitre,
  • Pascal Vola,
  • Eduard Muslimov

DOI
https://doi.org/10.3390/mca24010002
Journal volume & issue
Vol. 24, no. 1
p. 2

Abstract

Read online

Active optics techniques in astronomy provide high imaging quality. This paper is dedicated to highly deformable active optics that can generate non-axisymmetric aspheric surfaces—or freeform surfaces—by use of a minimum number of actuators. The aspheric mirror is obtained from a single uniform load that acts over the surface of a closed-form substrate whilst under axial reaction to its elliptical perimeter ring during spherical polishing. MESSIER space proposal is a wide-field low-central-obstruction folded-two-mirror-anastigmat or here called briefly three-mirror-anastigmat (TMA) telescope. The optical design is a folded reflective Schmidt. Basic telescope features are 36 cm aperture, f/2.5, with 1.6° × 2.6° field of view and a curved field detector allowing null distortion aberration for drift-scan observations. The freeform mirror is generated by spherical stress polishing that provides super-polished freeform surfaces after elastic relaxation. Preliminary analysis required use of the optics theory of 3rd-order aberrations and elasticity theory of thin elliptical plates. Final cross-optimizations were carried out with Zemax raytracing code and Nastran FEA elasticity code in order to determine the complete geometry of a glass ceramic Zerodur deformable substrate.

Keywords