Atmosphere (Dec 2020)
Impact of Lidar Data Assimilation on Low-Level Wind Shear Simulation at Lanzhou Zhongchuan International Airport, China: A Case Study
Abstract
Doppler wind lidar has played an important role in alerting low-level wind shear (LLW). However, these high-resolution observations are underused in the model-based analysis and forecasting of LLW. In this regard, we employed the Weather Research and Forecasting (WRF) model and its three-dimensional variational (3D-VAR) system to investigate the impact of lidar data assimilation (DA) on LLW simulations. Eight experiments (including six assimilation experiments) were designed for an LLW process as reported by pilots, in which different assimilation intervals, assimilation timespans, and model vertical resolutions were examined. Verified against observations from Doppler wind lidar and an automated weather observing system (AWOS), the introduction of lidar data is helpful for describing the LLW event, which can represent the temporal and spatial features of LLW, whereas experiments without lidar DA have no ability to capture LLW. While lidar DA has an obviously positive role in simulating LLW in the 10–20 min after the assimilation time, this advantage cannot be maintained over a longer time. Therefore, a smaller assimilation interval is favorable for improving the simulated effect of LLW. In addition, increasing the vertical resolution does not evidently improve the experimental results, either with or without assimilation.
Keywords