The Cryosphere (Sep 2017)

Application of a two-step approach for mapping ice thickness to various glacier types on Svalbard

  • J. J. Fürst,
  • F. Gillet-Chaulet,
  • T. J. Benham,
  • J. A. Dowdeswell,
  • M. Grabiec,
  • F. Navarro,
  • R. Pettersson,
  • G. Moholdt,
  • C. Nuth,
  • B. Sass,
  • K. Aas,
  • X. Fettweis,
  • C. Lang,
  • T. Seehaus,
  • M. Braun

DOI
https://doi.org/10.5194/tc-11-2003-2017
Journal volume & issue
Vol. 11
pp. 2003 – 2032

Abstract

Read online

The basal topography is largely unknown beneath most glaciers and ice caps, and many attempts have been made to estimate a thickness field from other more accessible information at the surface. Here, we present a two-step reconstruction approach for ice thickness that solves mass conservation over single or several connected drainage basins. The approach is applied to a variety of test geometries with abundant thickness measurements including marine- and land-terminating glaciers as well as a 2400 km2 ice cap on Svalbard. The input requirements are kept to a minimum for the first step. In this step, a geometrically controlled, non-local flux solution is converted into thickness values relying on the shallow ice approximation (SIA). In a second step, the thickness field is updated along fast-flowing glacier trunks on the basis of velocity observations. Both steps account for available thickness measurements. Each thickness field is presented together with an error-estimate map based on a formal propagation of input uncertainties. These error estimates point out that the thickness field is least constrained near ice divides or in other stagnant areas. Withholding a share of the thickness measurements, error estimates tend to overestimate mismatch values in a median sense. We also have to accept an aggregate uncertainty of at least 25 % in the reconstructed thickness field for glaciers with very sparse or no observations. For Vestfonna ice cap (VIC), a previous ice volume estimate based on the same measurement record as used here has to be corrected upward by 22 %. We also find that a 13 % area fraction of the ice cap is in fact grounded below sea level. The former 5 % estimate from a direct measurement interpolation exceeds an aggregate maximum range of 6–23 % as inferred from the error estimates here.