Plants (Dec 2022)

<i>Spirulina platensis</i> Mitigates the Inhibition of Selected miRNAs that Promote Inflammation in HAART-Treated HepG2 Cells

  • Thabani Sibiya,
  • Terisha Ghazi,
  • Jivanka Mohan,
  • Savania Nagiah,
  • Anil A. Chuturgoon

DOI
https://doi.org/10.3390/plants12010119
Journal volume & issue
Vol. 12, no. 1
p. 119

Abstract

Read online

The introduction of highly active antiretroviral therapy (HAART) in the treatment of HIV/AIDS has recently gained popularity. In addition, the significant role of microRNA expression in HIV pathogenesis cannot be overlooked; hence the need to explore the mechanisms of microRNA expression in the presence of HAART and Spirulina platensis (SP) in HepG2 cells. This study investigates the biochemical mechanisms of microRNA expression in HepG2 cells in the presence of HAART, SP, and the potential synergistic effect of HAART–SP. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine cell viability following SP treatment. The cellular redox status was assessed using the quantification of intracellular reactive oxygen species (ROS), lipid peroxidation, and a lactate dehydrogenase (LDH) assay. The fluorometric JC-1 assay was used to determine mitochondrial polarisation. The quantitative polymerase chain reaction (qPCR) was also employed for micro-RNA and gene expressions. The results show that MiR-146a (p p p p p = 0.4129). However, Cox-1 expression was significantly increased in HAART–SP-treated cells (p p p p < 0.0001) in the HAART–SP treatment. We hereby recommend further investigation on the synergistic roles of SP and HAART in the expression of microRNA with more focus on inflammatory and oxidative pathways.

Keywords