Cancer Treatment and Research Communications (Jan 2021)
Comparison of high-resolution melting analysis with direct sequencing for detection of FLT3-TKD, FLT3-ITD and WT1 mutations in acute myeloid leukemia
Abstract
Background: Acute Myeloid Leukemia (AML) is a group of hematologic diseases characterized by a variety of clinically important genetic alterations. Genetic mutations affecting the FMS-like receptor tyrosine kinase-3 (FLT3) and Wilm's tumor (WT-1) genes are associated with poor prognosis in AML. In this work, efficiency of HRM method for detection of FLT3-ITD, FLT3-TKD, and WT-1 mutations was assessed in comparison with direct sequencing. Method: A total of 58 formalin-fixed, paraffin-embedded BM biopsy specimens of AML patients were analyzed. Mutation detection was performed by HRM method and the results were consequently compared with direct sequencing Results: FLT3 and WT-1 mutations were detected in 21 (36.2%) and 3 (5.17%) samples, respectively. Among all FLT3 mutations, 10 (17.2%) and 11 (18.2%) samples were harboring the FLT3-ITD and-TKD gene mutations, respectively. Frequency of the FLT3-ITD was not statistically different in females (51%) and males (49%). Also, FLT3-TKD was more common in males although the differences in gender distribution were not statistically significant (P = 0.721 and P = 0.626, respectively). Conclusions: Regarded as the desirable characteristic, the present study is generally distinguished by the similar previous ones due to assessing the FFPE BM tissue from the perspective of the type of assessed sample. This discrepancy between our results and those in prior studies may be due to the disparity of the studied population size, adopted methods as well as the sample type. In this survey, regarding to low amount of extracted DNA from the paraffinized samples, the HRM method was efficient in determining the mentioned mutations.