Plants (Dec 2024)
Overexpression of StBBX14 Enhances Cold Tolerance in Potato
Abstract
Potato (Solanum tuberosum L.) is an important food crop, but low temperature affects the potato growth and yield. In this study, the expression level of StBBX14 was significantly increased over 1 h and then gradually decreased under cold stress. The subcellular localization of the StBBX14 protein took place in the nucleus. The OE-StBBX14 transgenic lines showed less leaf damage and significantly lower electrolyte leakage compared with the WT under cold stress, indicating that the overexpression of StBBX14 in the potato enhanced the cold resistance. A transcriptome analysis showed that a total of 2449 and 6274 differentially expressed genes were identified in WT-1 h and WT-12 h, respectively, when compared with WT-0h. A Gene Ontology enrichment analysis revealed that photosynthesis, cell wall, thylakoid, transcription regulator activity, oxidoreductase activity and glucosyltransferase activity were significantly enriched in OE-StBBX14 and WT. A total of 14 distinct modules were generated by a WGCNA analysis based on all differentially expressed genes (DEGs). Four major modules with cold-related genes were isolated. RT-qPCR analysis showed that the expression patterns of eight DEGs were consistent between the qPCR and RNA-seq. These findings illustrate that the StBBX14 played an important role in cold stress in potato and provided a data basis for the genetic improvement of cold resistance traits of potato.
Keywords