Respiratory Research (Jan 2021)

Targeting MALAT1 and miRNA-181a-5p for the intervention of acute lung injury/acute respiratory distress syndrome

  • Yaling Liu,
  • Xiaodong Wang,
  • Peiying Li,
  • Yanhua Zhao,
  • Liqun Yang,
  • Weifeng Yu,
  • Hong Xie

DOI
https://doi.org/10.1186/s12931-020-01578-8
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Background ALI/ARDS is a severe lung injury leading to refractory respiratory failure, accounting for high morbidity and mortality. However, therapeutic approaches are rather limited. Targeting long non-coding RNA MALAT1 and microRNA miR-181a-5p might be potential option for ALI/ARDS intervention. Objective We aimed to investigate the role of MALAT and miR-181a-5p in the pathogenesis of ALI/ARDS, and test the therapeutic effects of targeting MALAT and miR-181a-5p for ALI/ARDS intervention in vitro. Methods MALAT1 and miR-181a-5p levels were measured in plasma from ALI/ARDS patients. In vitro human pulmonary microvascular endothelial cell (HPMEC) injury was induced by LPS treatment, and molecular targets of MALAT1 and miR-181a-5p were explored by molecular biology approaches, mainly focusing on cell apoptosis and vascular inflammation. Interaction between MALAT1 and miR-181a-5p was also detected. Finally, the effects of targeting MALAT1 and miR-181a-5p for ALI/ARDS intervention were validated in a rat ALI/ARDS model. Results MALAT1 upregulation and miR-181a-5p downregulation were observed in ALI/ARDS patients. Transfection of mimic miR-181a-5p into HPMECs revealed decreased Fas and apoptosis, along with reduced inflammatory factors. Fas was proved to be a direct target of miR-181a-5p. Similar effects were also present upon MALAT1 knockdown. As for the interaction between MALAT1 and miR-181a-5p, MALAT1 knockdown increased miR-181a-5p expression. Knocking down of MALAT1 and miR-181a-5p could both improve the outcome in ALI/ARDS rats. Conclusion MALAT1 antagonism or miR-181a-5p could both be potential therapeutic strategies for ALI/ARDS. Mechanistically, miR-181a-5p directly inhibits Fas and apoptosis, along with reduced inflammation. MALAT1 negatively regulates miR-181a-5p.

Keywords