PLoS ONE (Jan 2013)

Drosophila KDEL receptor function in the embryonic salivary gland and epidermis.

  • Elliott W Abrams,
  • Yim Ling Cheng,
  • Deborah J Andrew

DOI
https://doi.org/10.1371/journal.pone.0077618
Journal volume & issue
Vol. 8, no. 10
p. e77618

Abstract

Read online

Core components of the secretory pathway have largely been identified and studied in single cell systems such as the budding yeast S. cerevisiae or in mammalian tissue culture. These studies provide details on the molecular functions of the secretory machinery; they fail, however, to provide insight into the role of these proteins in the context of specialized organs of higher eukaryotes. Here, we identify and characterize the first loss-of-function mutations in a KDEL receptor gene from higher eukaryotes. Transcripts from the Drosophila KDEL receptor gene KdelR - formerly known as dmErd2 - are provided maternally and, at later stages, are at elevated levels in several embryonic cell types, including the salivary gland secretory cells, the fat body and the epidermis. We show that, unlike Saccharomyces cerevisiae Erd2 mutants, which are viable, KdelR mutations are early larval lethal, with homozygous mutant animals dying as first instar larvae. KdelR mutants have larval cuticle defects similar to those observed with loss-of-function mutations in other core secretory pathway genes and with mutations in CrebA, which encodes a bZip transcription factor that coordinately upregulates secretory pathway component genes in specialized secretory cell types. Using the salivary gland, we demonstrate a requirement for KdelR in maintaining the ER pool of a subset of soluble resident ER proteins. These studies underscore the utility of the Drosophila salivary gland as a unique system for studying the molecular machinery of the secretory pathway in vivo in a complex eukaryote.