Diyala Journal of Engineering Sciences (Jun 2022)
Structural Behavior of Reinforced Lightweight Concrete Slabs
Abstract
This paper presents an exploration of choosing the optimum density for concrete that achieves the best structural performance for two-way slabs made of concrete with fine aggregate in different proportions less than the ratio used in ordinary concrete to produce different densities, by taking advantage of the idea of fine aggregate concrete which considers as light-weight concrete to achieve lighter concrete with higher structural endurance. The experimental program includes constructing and testing five slabs, four of them made of concrete with different fine aggregate radios 75%, 50%, 25%, and 0% to get different densities (2207, 1792, 1536, 1310 kg/m3) as well as another slab made of normal concrete used as a reference slab with a density of 2414 kg/m3. The outcomes reveal that decreasing the density of the slab from 2414 kg/m3 to 1310 kg/m3 by reduction fine aggregate in concrete from 100% to 0% respectively has more effect on the first crack load than that on the ultimate load of two-way slabs as the first crack load decreases with percentages 16.7%, 33.3%, 38.9%, and 61.1% the while the ultimate load decreases with percentages 7.3%, 21.9%, 46.3%, and 56.1%, respectively as compared to the reference (normal wight concrete slab). Also, decreasing the density of the slab made the cracks form and spread quickly and the slab failure tends towards the brittleness, and the cracks diffused and grew faster and wider.
Keywords