Catalysts (Aug 2022)

Photocatalytic Oxidative Desulfurization of Thiophene by Exploiting a Mesoporous V<sub>2</sub>O<sub>5</sub>-ZnO Nanocomposite as an Effective Photocatalyst

  • Maha Alhaddad,
  • Ahmed Shawky,
  • Zaki I. Zaki

DOI
https://doi.org/10.3390/catal12090933
Journal volume & issue
Vol. 12, no. 9
p. 933

Abstract

Read online

Due to increasingly stringent environmental regulations imposed by governments throughout the world, the manufacture of low-sulfur fuels has received considerable assiduity in the petroleum industry. In this investigation, mesoporous V2O5-decorated two-dimensional ZnO nanocrystals were manufactured using a simple surfactant-assisted sol–gel method for thiophene photocatalytic oxidative desulfurization (TPOD) at ambient temperature applying visible illumination. When correlated to pure ZnO NCs, V2O5-added ZnO nanocomposites dramatically improved the photocatalytic desulfurization of thiophene, and the reaction was shown to follow the pseudo-first-order model. The photocatalytic effectiveness of the 3.0 wt.% V2O5-ZnO photocatalyst was the greatest among all the other samples, with a rate constant of 0.0166 min−1, which was 30.7 significantly greater than that of pure ZnO NCs (0.00054 min−1). Compared with ZnO NCs, and owing to their synergetic effects, substantial creation of hydroxyl radical levels, lesser light scattering action, quick transport of thiophene species to the active recenters, and efficient visible-light gathering, V2O5-ZnO nanocomposites were found to have enhanced photocatalytic efficiency. V2O5-ZnO nanocomposites demonstrated outstanding stability during TPOD. Using mesoporous V2O5-ZnO nanocomposites, the mechanism of the charge separation process was postulated.

Keywords