F1000Research (Sep 2024)
Analyzing Molecular Traits of H9N2 Avian Influenza Virus Isolated from a Same Poultry Farm in West Java Province, Indonesia, in 2017 and 2023 [version 2; peer review: 1 approved, 2 approved with reservations]
Abstract
Background Indonesia is one of the countries that is endemic to avian influenza virus subtype H9N2. This study aims to compare the molecular characteristics of avian influenza virus (AIV) subtype H9N2 from West Java. Methods Specific pathogen-free (SPF) embryonated chicken eggs were used to inoculate samples. RNA extraction and RT–qPCR confirmed the presence of H9 and N2 genes in the samples. RT–PCR was employed to amplify the H9N2-positive sample. Nucleotide sequences were obtained through Sanger sequencing and analyzed using MEGA 7. Homology comparison and phylogenetic tree analysis, utilizing the neighbor-joining tree method, assessed the recent isolate’s similarity to reference isolates from GenBank. Molecular docking analysis was performed on the HA1 protein of the recent isolate and the A/Layer/Indonesia/WestJava-04/2017 isolate, comparing their interactions with the sialic acids Neu5Ac2-3Gal and Neu5Ac2-6Gal. Results RT–qPCR confirmed the isolate samples as AIV subtype H9N2. The recent virus exhibited 11 amino acid residue differences compared to the A/Layer/Indonesia/WestJava-04/2017 isolate. Phylogenetically, the recent virus remains within the h9.4.2.5 subclade. Notably, at antigenic site II, the recent isolate featured an amino acid N at position 183, unlike A/Layer/Indonesia/WestJava-04/2017. Molecular docking analysis revealed a preference of HA1 from the 2017 virus for Neu5Ac2-3Gal, while the 2023 virus displayed a tendency to predominantly bind with Neu5Ac2-6Gal. Conclusion In summary, the recent isolate displayed multiple mutations and a strong affinity for Neu5Ac2-6Gal, commonly found in mammals.