Carry-Over of Zearalenone and Its Metabolites to Intestinal Tissues and the Expression of CYP1A1 and GSTπ1 in the Colon of Gilts before Puberty
Magdalena Mróz,
Magdalena Gajęcka,
Paweł Brzuzan,
Sylwia Lisieska-Żołnierczyk,
Dawid Leski,
Łukasz Zielonka,
Maciej T. Gajęcki
Affiliations
Magdalena Mróz
Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland
Magdalena Gajęcka
Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland
Paweł Brzuzan
Department of Environmental Biotechnology, Faculty of Environmental Sciences and Fisheries, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, 10-719 Olsztyn, Poland
Sylwia Lisieska-Żołnierczyk
Independent Public Health Care Centre of the Ministry of the Interior and Administration, and the Warmia and Mazury Oncology Centre in Olsztyn, Wojska Polskiego 37, 10-228 Olsztyn, Poland
Dawid Leski
Research and Development Department, Wipasz S.A., Wadąg 9, 10-373 Wadąg, Poland
Łukasz Zielonka
Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland
Maciej T. Gajęcki
Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland
The objective of this study was to evaluate whether low doses of zearalenone (ZEN) affect the carry-over of ZEN and its metabolites to intestinal tissues and the expression of CYP1A1 and GSTπ1 in the large intestine. Prepubertal gilts (with a BW of up to 14.5 kg) were exposed in group ZEN to daily ZEN5 doses of 5 μg/kg BW (n = 15); in group ZEN10, 10 μg/kg BW (n = 15); in group ZEN15, 15 μg/kg BW (n = 15); or were administered a placebo (group C, n = 15) throughout the experiment. After euthanasia, tissues were sampled on exposure days 7, 21, and 42 (D1, D2, and D3, respectively). The results confirmed that the administered ZEN doses (LOAEL, NOAEL, and MABEL) were appropriate to reliably assess the carry-over of ZEN. Based on the observations made during 42 days of exposure to pure ZEN, it can be hypothesized that all mycotoxins (ZEN, α-zearalenol, and β-zearalenol) contribute to a balance between intestinal cells and the expression of selected genes encoding enzymes that participate in biotransformation processes in the large intestine; modulate feminization processes in prepubertal gilts; and elicit flexible, adaptive responses of the macroorganism to mycotoxin exposure at the analyzed doses.