Electronics (May 2021)

Virtual Router Design and Modeling for Future Networks with QoS Guarantees

  • Mykola Beshley,
  • Natalia Kryvinska,
  • Halyna Beshley,
  • Oleg Yaremko,
  • Julia Pyrih

DOI
https://doi.org/10.3390/electronics10101139
Journal volume & issue
Vol. 10, no. 10
p. 1139

Abstract

Read online

A virtual router model with a static and dynamic resource reconfiguration for future internet networking was developed. This technique allows us to create efficient virtual devices with optimal parameters (queue length, queue overflow management discipline, number of serving devices, mode of serving devices) to ensure the required level of quality of service (QoS). An analytical model of a network device with virtual routers is proposed. By means of the mentioned mathematical representation, it is possible to determine the main parameters of the virtual queue system, which are based on the first in, first out (FIFO) algorithm, in order to analyze the efficiency of network resources utilization, as well as to determine the parameters of QoS flows, for a given intensity of packets arrival at the input interface of the network element. In order to research the guaranteed level of QoS in future telecommunications networks, a simulation model of a packet router with resource virtualization was developed. This model will allow designers to choose the optimal parameters of network equipment for the organization of virtual routers, which, in contrast to the existing principle of service, will provide the necessary quality of service provision to end users in the future network. It is shown that the use of standard static network device virtualization technology is not able to fully provide a guaranteed level of QoS to all present flows in the network by the criterion of minimum delay. An approach for dynamic reconfiguration of network device resources for virtual routers has been proposed, which allows more flexible resource management at certain points in time depending on the input load. Based on the results of the study, it is shown that the dynamic virtualization of the network device provides a guaranteed level of QoS for all transmitted flows. Thus, the obtained results confirm the feasibility of using dynamic reconfiguration of network device resources to improve the quality of service for end users.

Keywords