Elementa: Science of the Anthropocene (Jul 2018)

Characterizing the vulnerability of intertidal organisms in Olympic National Park to ocean acidification

  • Jonathan M. Jones,
  • Uta Passow,
  • Steven C. Fradkin

DOI
https://doi.org/10.1525/elementa.312
Journal volume & issue
Vol. 6, no. 1

Abstract

Read online

Ocean acidification (OA) will have a predominately negative impact on marine animals sensitive to changes in carbonate chemistry. Coastal upwelling regions, such as the Northwest coast of North America, are likely among the first ecosystems to experience the effects of OA as these areas already experience high pH variability and naturally low pH extremes. Over the past decade, pH off the Olympic coast of Washington has declined an order of magnitude faster than predicted by accepted conservative climate change models. Resource managers are concerned about the potential loss of intertidal biodiversity likely to accompany OA, but as of yet, there are little pH sensitivity data available for the vast majority of taxa found on the Olympic coast. The intertidal zone of Olympic National Park is particularly understudied due to its remote wilderness setting, habitat complexity, and exceptional biodiversity. Recently developed methodological approaches address these challenges in determining organism vulnerability by utilizing experimental evidence and expert opinion. Here, we use such an approach to determine intertidal organism sensitivity to pH for over 700 marine invertebrate and algal species found on the Olympic coast. Our results reinforce OA vulnerability paradigms for intertidal taxa that build structures from calcium carbonate, but also introduce knowledge gaps for many understudied species. We furthermore use our assessment to identify how rocky intertidal communities at four long-term monitoring sites on the Olympic coast could be affected by OA given their community composition.

Keywords