Journal of Data Mining and Digital Humanities (Aug 2023)
Affect as a proxy for literary mood
Abstract
We propose to use affect as a proxy for mood in literary texts. In this study, we explore the differences in computationally detecting tone versus detecting mood. Methodologically we utilize affective word embeddings to look at the affective distribution in different text segments. We also present a simple yet efficient and effective method of enhancing emotion lexicons to take both semantic shift and the domain of the text into account producing real-world congruent results closely matching both contemporary and modern qualitative analyses.
Keywords