Atmospheric Measurement Techniques (Sep 2015)
A methodology for investigating dust model performance using synergistic EARLINET/AERONET dust concentration retrievals
- I. Binietoglou,
- S. Basart,
- L. Alados-Arboledas,
- V. Amiridis,
- A. Argyrouli,
- H. Baars,
- J. M. Baldasano,
- D. Balis,
- L. Belegante,
- J. A. Bravo-Aranda,
- P. Burlizzi,
- V. Carrasco,
- A. Chaikovsky,
- A. Comerón,
- G. D'Amico,
- M. Filioglou,
- M. J. Granados-Muñoz,
- J. L. Guerrero-Rascado,
- L. Ilic,
- P. Kokkalis,
- A. Maurizi,
- L. Mona,
- F. Monti,
- C. Muñoz-Porcar,
- D. Nicolae,
- A. Papayannis,
- G. Pappalardo,
- G. Pejanovic,
- S. N. Pereira,
- M. R. Perrone,
- A. Pietruczuk,
- M. Posyniak,
- F. Rocadenbosch,
- A. Rodríguez-Gómez,
- M. Sicard,
- N. Siomos,
- A. Szkop,
- E. Terradellas,
- A. Tsekeri,
- A. Vukovic,
- U. Wandinger,
- J. Wagner
Affiliations
- I. Binietoglou
- National Institute of R&D for Optoelectronics, 409 Atomistilor Str., 77125, Magurele, Ilfov, Romania
- S. Basart
- Earth Sciences Department, Barcelona Supercomputing Center, Centro Nacional de Supercomputación (BSC-CNS), Barcelona, Spain
- L. Alados-Arboledas
- Department of Applied Physics, Universidad de Granada, Granada, Spain
- V. Amiridis
- National Observatory of Athens, Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing (NOA-IAASARS), Athens, Greece
- A. Argyrouli
- National Technical University of Athens, Physics Department, Laser Remote Sensing Laboratory, Zografou, Greece
- H. Baars
- Leibniz Institute for Tropospheric Research, Leipzig, Germany
- J. M. Baldasano
- Earth Sciences Department, Barcelona Supercomputing Center, Centro Nacional de Supercomputación (BSC-CNS), Barcelona, Spain
- D. Balis
- Aristotle University of Thessaloniki, Faculty of Sciences, School of Physics, Thessaloniki, Greece
- L. Belegante
- National Institute of R&D for Optoelectronics, 409 Atomistilor Str., 77125, Magurele, Ilfov, Romania
- J. A. Bravo-Aranda
- Department of Applied Physics, Universidad de Granada, Granada, Spain
- P. Burlizzi
- Dipartemento di Fisica, Universitá di Lecce, Lecce, Italy
- V. Carrasco
- Èvora Geophysics Centre, Èvora, Portugal
- A. Chaikovsky
- Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
- A. Comerón
- Department of Signal Theory and Communications, Remote Sensing Laboratory, Universitat Politècnica de Catalunya, Barcelona, Spain
- G. D'Amico
- Consiglio Nazionale delle Ricerche, Istituto di Metodologie per l'Analisi Ambientale (CNR-IMAA), Tito Scalo, Potenza, Italy
- M. Filioglou
- Aristotle University of Thessaloniki, Faculty of Sciences, School of Physics, Thessaloniki, Greece
- M. J. Granados-Muñoz
- Department of Applied Physics, Universidad de Granada, Granada, Spain
- J. L. Guerrero-Rascado
- Department of Applied Physics, Universidad de Granada, Granada, Spain
- L. Ilic
- Institute of Physics, Belgrade, Serbia
- P. Kokkalis
- National Observatory of Athens, Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing (NOA-IAASARS), Athens, Greece
- A. Maurizi
- Consiglio Nazionale delle Ricerche, Istituto di Scienze dell'Atmosfera e del Clima (CNR-ISAC), Bologna, Italy
- L. Mona
- Consiglio Nazionale delle Ricerche, Istituto di Metodologie per l'Analisi Ambientale (CNR-IMAA), Tito Scalo, Potenza, Italy
- F. Monti
- Consiglio Nazionale delle Ricerche, Istituto di Scienze dell'Atmosfera e del Clima (CNR-ISAC), Bologna, Italy
- C. Muñoz-Porcar
- Department of Signal Theory and Communications, Remote Sensing Laboratory, Universitat Politècnica de Catalunya, Barcelona, Spain
- D. Nicolae
- National Institute of R&D for Optoelectronics, 409 Atomistilor Str., 77125, Magurele, Ilfov, Romania
- A. Papayannis
- National Technical University of Athens, Physics Department, Laser Remote Sensing Laboratory, Zografou, Greece
- G. Pappalardo
- Consiglio Nazionale delle Ricerche, Istituto di Metodologie per l'Analisi Ambientale (CNR-IMAA), Tito Scalo, Potenza, Italy
- G. Pejanovic
- South East European Virtual Climate Change Center (SEEVCCC), Republic Hydrometeorological Service of Serbia, Belgrade, Serbia
- S. N. Pereira
- Èvora Geophysics Centre, Èvora, Portugal
- M. R. Perrone
- Dipartemento di Fisica, Universitá di Lecce, Lecce, Italy
- A. Pietruczuk
- Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
- M. Posyniak
- Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
- F. Rocadenbosch
- Department of Signal Theory and Communications, Remote Sensing Laboratory, Universitat Politècnica de Catalunya, Barcelona, Spain
- A. Rodríguez-Gómez
- Department of Signal Theory and Communications, Remote Sensing Laboratory, Universitat Politècnica de Catalunya, Barcelona, Spain
- M. Sicard
- Department of Signal Theory and Communications, Remote Sensing Laboratory, Universitat Politècnica de Catalunya, Barcelona, Spain
- N. Siomos
- Aristotle University of Thessaloniki, Faculty of Sciences, School of Physics, Thessaloniki, Greece
- A. Szkop
- Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
- E. Terradellas
- AEMET, Barcelona, Spain
- A. Tsekeri
- National Observatory of Athens, Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing (NOA-IAASARS), Athens, Greece
- A. Vukovic
- South East European Virtual Climate Change Center (SEEVCCC), Republic Hydrometeorological Service of Serbia, Belgrade, Serbia
- U. Wandinger
- Leibniz Institute for Tropospheric Research, Leipzig, Germany
- J. Wagner
- Leibniz Institute for Tropospheric Research, Leipzig, Germany
- DOI
- https://doi.org/10.5194/amt-8-3577-2015
- Journal volume & issue
-
Vol. 8,
no. 9
pp. 3577 – 3600
Abstract
Systematic measurements of dust concentration profiles at a continental scale were recently made possible by the development of synergistic retrieval algorithms using combined lidar and sun photometer data and the establishment of robust remote-sensing networks in the framework of Aerosols, Clouds, and Trace gases Research InfraStructure Network (ACTRIS)/European Aerosol Research Lidar Network (EARLINET). We present a methodology for using these capabilities as a tool for examining the performance of dust transport models. The methodology includes considerations for the selection of a suitable data set and appropriate metrics for the exploration of the results. The approach is demonstrated for four regional dust transport models (BSC-DREAM8b v2, NMMB/BSC-DUST, DREAMABOL, DREAM8-NMME-MACC) using dust observations performed at 10 ACTRIS/EARLINET stations. The observations, which include coincident multi-wavelength lidar and sun photometer measurements, were processed with the Lidar-Radiometer Inversion Code (LIRIC) to retrieve aerosol concentration profiles. The methodology proposed here shows advantages when compared to traditional evaluation techniques that utilize separately the available measurements such as separating the contribution of dust from other aerosol types on the lidar profiles and avoiding model assumptions related to the conversion of concentration fields to aerosol extinction values. When compared to LIRIC retrievals, the simulated dust vertical structures were found to be in good agreement for all models with correlation values between 0.5 and 0.7 in the 1–6 km range, where most dust is typically observed. The absolute dust concentration was typically underestimated with mean bias values of -40 to -20 μg m−3 at 2 km, the altitude of maximum mean concentration. The reported differences among the models found in this comparison indicate the benefit of the systematic use of the proposed approach in future dust model evaluation studies.