Sensors (Jun 2024)

Dynamic Validation of Calibration Accuracy and Structural Robustness of a Multi-Sensor Mobile Robot

  • Yang Liu,
  • Ximin Cui,
  • Shenghong Fan,
  • Qiang Wang,
  • Yuhan Liu,
  • Yanbiao Sun,
  • Guo Wang

DOI
https://doi.org/10.3390/s24123896
Journal volume & issue
Vol. 24, no. 12
p. 3896

Abstract

Read online

For mobile robots, the high-precision integrated calibration and structural robustness of multi-sensor systems are important prerequisites for ensuring healthy operations in the later stage. Currently, there is no well-established validation method for the calibration accuracy and structural robustness of multi-sensor systems, especially for dynamic traveling situations. This paper presents a novel validation method for the calibration accuracy and structural robustness of a multi-sensor mobile robot. The method employs a ground–object–air cooperation mechanism, termed the “ground surface simulation field (GSSF)—mobile robot -photoelectric transmitter station (PTS)”. Firstly, a static high-precision GSSF is established with the true north datum as a unified reference. Secondly, a rotatable synchronous tracking system (PTS) is assembled to conduct real-time pose measurements for a mobile vehicle. The relationship between each sensor and the vehicle body is utilized to measure the dynamic pose of each sensor. Finally, the calibration accuracy and structural robustness of the sensors are dynamically evaluated. In this context, epipolar line alignment is employed to assess the accuracy of the evaluation of relative orientation calibration of binocular cameras. Point cloud projection and superposition are utilized to realize the evaluation of absolute calibration accuracy and structural robustness of individual sensors, including the navigation camera (Navcam), hazard avoidance camera (Hazcam), multispectral camera, time-of-flight depth camera (TOF), and light detection and ranging (LiDAR), with respect to the vehicle body. The experimental results demonstrate that the proposed method offers a reliable means of dynamic validation for the testing phase of a mobile robot.

Keywords