Journal of Applied Fluid Mechanics (Mar 2023)

Study on Multi-flow Field Characteristics of Unloading Groove Spacing of Bidirectional Gear Pump

  • H. Zhang,
  • D. Y. Zhan,
  • R. Q. Tian,
  • T. A. Zhang

DOI
https://doi.org/10.47176/jafm.16.01.1591
Journal volume & issue
Vol. 16, no. 5
pp. 1089 – 1098

Abstract

Read online

Improving the output flow quality of the high-precision micro bidirectional gear pump can effectively improve the position control accuracy and dynamic characteristics of the electro-hydraulic actuator. In order to meet the appeal requirements and reduce the vibration and noise of the gear pump and prolong its working life, this paper starts with the research of the key part of the gear pump–the unloading groove structure. The three characteristics of trapped oil phenomenon, cavitation phenomenon, and flow were used as key indices to evaluate gear pump performance. Using numerical simulation analysis, the dynamic grid simulation method was used to explore the influence of unloading groove spacing on the transient multi-flow field characteristics of the gear pump under conventional design range. Our results show that reducing the distance between unloading grooves can greatly reduce the trapped oil pressure and the amount of gas precipitation in the flow field, while reducing flow pulsation and improving volumetric efficiency. However, when the unloading groove spacing is too small, the instantaneous flow curve loses the pulsation characteristics and the flow stability decreases. Considering the influence of the gear pump on the accuracy of the electro-hydraulic actuator and the performance of the gear pump itself, the analytic hierarchy process was used to obtain the 1 mm unloading slot spacing, which best meets the engineering requirements of high flow accuracy and low vibration noise. The results provide a basis for work on the structural optimization of high-precision micro gear pumps.

Keywords