Biology Direct (Jan 2022)
H3K27ac-activated EGFR-AS1 promotes cell growth in cervical cancer through ACTN4-mediated WNT pathway
Abstract
Abstract Background Recently, extensive studies unveiled that lncRNAs exert critical function in the development and progression of cervical cancer (CC). EGFR-AS1 is a novel lncRNA which has not been well-explored in CC. Aims Our study aimed to research the function and molecular mechanism of EGFR-AS1 in CC cells. qRT-PCR analysis was performed to detect gene expression. Colony formation, EdU, flow cytometry, TUNEL, western blot and transwell assays were performed to assess the effect of EGFR-AS1 on CC cell growth. The regulatory mechanism of EGFR-AS1 was dug out through mechanism experiments. Results EGFR-AS1 was notably overexpressed in CC cell lines. Loss-of-functional experiments revealed that EGFR-AS1 promoted CC cell proliferation, migration and invasion, and suppressed cell apoptosis. Mechanistically, up-regulation of EGFR-AS1 was attributed to the activation of H3K27 acetylation (H3K27ac). Further, EGFR-AS1 was revealed to function as miR-2355-5p sponge. Additionally, miR-2355-5p was down-regulated in CC cells and ACTN4 was identified as a target gene of miR-2355-5p. Ultimately, overexpressed ACTN4 could reserve the suppressive role of EGFR-AS1 silencing in CC cell growth. Last but not least, EGFR-AS1 facilitated CC cell growth via ACTN4-mediated WNT pathway. Conclusions H3K27ac-activated EGFR-AS1 sponged miR-2355-5p and promoted CC cell growth through ACTN4-mediated WNT pathway.
Keywords