Shock and Vibration (Jan 2018)

A Novel Faults Diagnosis Method for Rolling Element Bearings Based on ELCD and Extreme Learning Machine

  • Mingliang Liang,
  • Dongmin Su,
  • Daidi Hu,
  • Mingtao Ge

DOI
https://doi.org/10.1155/2018/1891453
Journal volume & issue
Vol. 2018

Abstract

Read online

A rolling bearing fault diagnosis method based on ensemble local characteristic-scale decomposition (ELCD) and extreme learning machine (ELM) is proposed. Vibration signals were decomposed using ELCD, and numerous intrinsic scale components (ISCs) were obtained. Next, time-domain index, energy, and relative entropy of intrinsic scale components were calculated. According to the distance-based evaluation approach, sensitivity features can be extracted. Finally, sensitivity features were input to extreme learning machine to identify rolling bearing fault types. Experimental results show that the proposed method achieved better performance than support vector machine (SVM) and backpropagation (BP) neural network methods.