BMC Evolutionary Biology (Mar 2019)

A comparison of reproductive isolation between two closely related oak species in zones of recent and ancient secondary contact

  • Wan-Jin Liao,
  • Bi-Ru Zhu,
  • Yue-Fei Li,
  • Xiao-Meng Li,
  • Yan-Fei Zeng,
  • Da-Yong Zhang

DOI
https://doi.org/10.1186/s12862-019-1399-y
Journal volume & issue
Vol. 19, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background Much of the debate over the evolutionary consequences of hybridization on genetic divergence and speciation results from the breakdown or reinforcement of reproductive barriers in secondary hybrid zones. Among hybrid populations established for different lengths of time following secondary contact, stronger reproductive barriers are generally expected to occur in zones with longer contact. However, in plants no detailed investigation of recent and ancient zones of secondary contact has been conducted despite the importance of such a comparative study. Here, we compare pre- and postzygotic reproductive barriers between two closely related oak species, Quercus mongolica and Q. liaotungensis, in such a situation. Results The recorded flowering times of both species overlapped in both contact zones. The fruit set at 10 and 30 days after interspecific hand pollination was not significantly lower than that after intraspecific pollination whenever Q. mongolica or Q. liaotungensis comprised the maternal parents in both populations. These results indicated that neither prezygotic phenological barriers nor interspecific incompatibility could have resulted in the reproductive isolation between the two species in both hybrid zones. However, the proportion of hybrid seeds produced by both species in the ancient zone was significantly lower than that recorded in the recent zone of secondary contact. In addition, the proportion of hybrid seeds simulated to form, assuming both random mating and an absence of postpollination barriers, was significantly higher than that detected in the ancient contact zone but not in the recent contact zone. These results suggest stronger early-acting postzygotic isolation between the two oak species in the ancient relative to the recent contact zone. Conclusions Our comparative study demonstrated that postzygotic barriers during seed maturity were the main contributing factor to total reproductive isolation, particularly in the ancient contact zone, which aided species delimitation. In the recently formed secondary contact zone, pre- and postzygotic barriers were not well developed, and a high frequency of natural hybridization was evident. To our knowledge this study provides the first comparison of reproductive isolation between the ancient and recent secondary contact zones in plants and helps to clarify the evolutionary consequences of hybridization in a temporal context.

Keywords