Energies (Mar 2021)

Electrical and Thermal Performances of Bi-Fluid PV/Thermal Collectors

  • Oussama El Manssouri,
  • Bekkay Hajji,
  • Giuseppe Marco Tina,
  • Antonio Gagliano,
  • Stefano Aneli

DOI
https://doi.org/10.3390/en14061633
Journal volume & issue
Vol. 14, no. 6
p. 1633

Abstract

Read online

Photovoltaic (PV) modules suffer from a reduction of electric conversion due to the high operating temperatures of the PV cells. Hybrid photovoltaic/thermal (PV/T) technology represents an effective solution for cooling the PV cells. This paper discusses a theoretical study on a novel bi-fluid PV/T collector. One dimensional steady-state numerical model is developed, and computer simulations are performed using MATLAB. This numerical model is based on a pilot PV/T plant, installed in the Campus of the University of Catania, and was experimentally validated. The design of the proposed bi-fluid PV/T is based on a commercial WISC PV/T collector, to which are added an air channel, an aluminum absorber with fins, and a layer of thermal insulation. The analysis of the thermal behavior of the proposed collector is carried out as a function of the flow rate of the two heat transfer fluids (air and water). Finally, the comparative analysis between the conventional water-based PV/T collector, namely PV/T, and the bi-fluid (water/air-based) WISC PVT, namely PV/Tb, is presented for both winter and summer days. For the investigated winter day, the numerical results show an overall improvement of the performance of the bi-fluid PV/T module, with an increase of thermal energy transferred to the liquid side of 20%, and of 15.3% for the overall energy yield in comparison to the conventional PV/T collector. Instead, a loss of 0.2% of electricity is observed. No performance improvements were observed during the summer day.

Keywords