Nuclear Physics B (May 2025)
Thermodynamics of high order correction for Schwarzschild-AdS black hole in non-commutative geometry
Abstract
Under the premise that quantum gravity becomes non-negligible, higher-order corrections of non-commutative geometry dominate. In this paper, we studied the thermodynamics of high-order corrections for Schwarzschild-AdS black hole with Lorentz distribution in the framework of non-commutative geometry. Our results indicate that when high-order corrections dominate, the thermodynamic behavior of Schwarzschild-AdS black hole in non-commutative geometry will gradually approach that of ordinary Schwarzschild-AdS black hole. In addition, we also studied the Joule-Thomson effect of Schwarzschild-AdS black hole under high-order corrections.