China Geology (Jun 2021)

Characteristics of major and trace elements in surface sediments of the Makran Accretionary Prism, Pakistan and their implications for natural gas hydrates

  • Jian-ming Gong,
  • Jing Liao,
  • Yu-xi Zhang,
  • Jie Liang,
  • Jian-wen Chen,
  • Nuzhat Khan,
  • Syed Waseem Haider

Journal volume & issue
Vol. 4, no. 2
pp. 299 – 310

Abstract

Read online

To accurately identify the natural gas hydrates (NGH) in the sea area of the Makran Accretionary Prism, Pakistan, this paper presents the testing and analysis of major and trace elements in sediment samples taken from two stations (S2 and S3) in the area by the China Geological Survey. As shown by testing results, all major elements are slightly different in content between the two stations except SiO2 and CaO. This also applies to the trace elements that include Sr and Ba primarily and Cr, Ni and Zn secondarily. It can be concluded in this study that the tectonic setting of the Makran Accretionary Prism is dominated by oceanic island arc and that provenance of the Makran Accretionary Prism is dominated by felsic igneous provenance, which is at the initial weathering stage and mainly consists of granodiorite. Besides terrigenous detritus, there are sediments possibly originating from Makran-Bela Ophiolite from the northwestern part and Murray Ridge igneous rocks from the southeastern part. The V/Cr, Ni/Co, and V/(V+Ni) ratios indicate that sediments of the two stations are in an oxidation-suboxidation environment. However, the authors infer that the sedimentary environment of the sediments 3.0 m below the seafloor tends to be gradually transformed into a reduction environment by comparison with the Qiongdongnan Basin in the South China Sea where NGH has been discovered. The sediments in the Makran Accretionary Prism are rich in organic matter, with total organic carbon (TOC) content greater than 1%. According to comprehensive research, the organic matter in the sediments mainly originates from marine algae and has high TOC content, which is favorable for the formation of NGH.

Keywords