Journal of Marine Science and Engineering (Aug 2024)
Comparative Study on the Performances of a Hinged Flap-Type Wave Energy Converter Considering Both Fixed and Floating Bases
Abstract
The dynamical modeling and power optimization of floating wind–wave platforms, especially in regard to configurations based on constrained floating multi-body systems, lack in-depth systematic investigation. In this study, a floating wind-flap platform consisting of a flap-type wave energy converter and a floating offshore wind turbine is solved in the frequency domain considering the mechanical and hydrodynamic couplings of floating multi-body geometries and a model that suits the constraints of the hinge connection, which can accurately calculate the frequency domain dynamic response of the flap-type WEC. The results are compared with bottom-fixed flap-type wave energy converters in the absence of coupling with a floating wind platform. Moreover, combined with traditional optimization methods of power take-off systems for wave energy conversion, an optimization method is developed to suit the requirements of floating wind-flap platform configurations. The results are drawn for a specific operation site in the South China Sea, whereas a sensitivity analysis of the parameters is performed. It is found that the floating wind-flap platform has better wave energy absorption performance in the low-frequency range than the bottom-fixed flap-type wave energy converter; the average power generation in the low-frequency range can increase by up to 150 kW, mainly due to constructive hydrodynamic interactions, though it significantly fluctuates from the sea waves’ frequency range to the high-frequency range. Based on spectral analysis, operational results are drawn for irregular sea states, and the expected power for both types of flap-type WECs is around 30 kW, which points to a similar wave energy absorption performance when comparing the bottom-fixed flap with the flap within the hybrid configuration.
Keywords