Informatics in Medicine Unlocked (Jan 2022)

Unravelling Vitamin B12 as a potential inhibitor against SARS-CoV-2: A computational approach

  • Medha Pandya,
  • Sejal Shah,
  • Dhanalakshmi M,
  • Tanzil Juneja,
  • Amisha Patel,
  • Ayushman Gadnayak,
  • Sushma Dave,
  • Kajari Das,
  • Jayashankar Das

Journal volume & issue
Vol. 30
p. 100951

Abstract

Read online

The new severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) is the etiological agent of Coronavirus disease 2019 (COVID-19), which becomes an eventual pandemic outbreak. Lack of proper therapeutic management has accelerated the researchers to repurpose existing drugs with known preclinical and toxicity profiles, which can easily enter Phase 3 or 4 or can be used directly in clinical settings. Vitamins are necessary nutrients for cell growth, function, and development. Furthermore, they play an important role in pathogen defence via cell-mediated responses and boost immunity. Using a computational approach, we intend to identify the probable inhibitory effect of all vitamins on the drug targets of COVID-19. The computational analysis demonstrated that vitamin B12 resulted in depicting suitable significant binding with furin, RNA dependent RNA polymerase (RdRp), Main proteases (Mpro), ORF3a and ORF7a and Vitamin D3 with spike protein and vitamin B9 with non structural protein 3 (NSP3). A detailed examination of vitamins suggests that vitamin B12 may be the component that reduces virulence by blocking furin which is responsible for entry of virus in the host cell. Details from the Molecular Dynamics (MD) simulation study aided in determining vitamin B12 as a possible furin inhibitor.

Keywords